Upper bounds on Rubinstein distances on configuration spaces and applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Isoperimetric and related bounds on configuration spaces

Using finite difference operators, we define a notion of boundary and surface measure for configuration sets under Poisson measures. A Margulis-Russo type identity and a co-area formula are stated with applications to bounds on the probabilities of monotone sets of configurations and on related isoperimetric constants.

متن کامل

Rademacher’s Theorem on Configuration Spaces and Applications

We consider an L-Wasserstein type distance ρ on the configuration space ΓX over a Riemannian manifold X, and we prove that ρ-Lipschitz functions are contained in a Dirichlet space associated with a measure on ΓX satisfying certain natural assumptions. These assumptions are in particular fulfilled by the classical Poisson measures and by a large class of tempered grandcanonical Gibbs measures wi...

متن کامل

Metrics for measuring distances in configuration spaces.

In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional config...

متن کامل

Upper Bounds of Heat Kernels on Doubling Spaces

In this paper we give various equivalent characterizations of upper estimates of heat kernels of regular, conservative and local Dirichlet forms on doubling spaces, from both the analytic and probabilistic points of view. The first part of this paper uses purely analytic arguemtn, while the second part focuses on the probabilistic aspects where the exit time plays an important role.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Stochastic Analysis

سال: 2010

ISSN: 0973-9599

DOI: 10.31390/cosa.4.3.05